National San Luis Gonzaga de Ica

y of Chinese Academy of Science




pcim
Abstract

= SiC power modules are gaining popularity for EV traction inverters thanks
to higher efficiency and power density.

= The fast-switching characteristics of SiC MOSFETs present challenges in
the design and mass production of power modules.

= The study is based on onsemi‘s SSDC SiC power module for EV traction
inverters

= This paper explores the impact of package parasitic mismatch and die-
level mismatch on the robustness of SiC power modules, using
commercially available simulation tools such as ANSYS® Q3D Extractor?®,
ANSYS® Icepak® and SIMetrix technology.

= The modeling approach is validated with actual test results, followed by
an investigation of die level current-sharing.

= We conclude with proposed mitigation measures to enhance the power
module's ruggedness.
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Design Challenges

Fast-switching and high-power density of SiC present design challenges:
= More sensitive to package parasitic RLC

= Package layout mismatch induces current-sharing mismatch.

= Die-to-die process variation induces current-sharing mismatch.

= Joule heating of metal interconnect needs to be evaluated in conjunction
with CFD simulation to accurately predict temperature profile.

Power module designers are challenged to mitigate risk with proven
techniques.
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Modelling and Veritication workflow — *

= Commercially available CAD software and internally
developed scripting are utilized to streamline the
simulation process

» Flectrical and thermal simulation results are
validated with actual test results

= Die level current sharing is investigated

= Measures for improving module ruggedness are

onsemi SSDC SiC 900V power
proposed

module for EV traction inverter

Onsemi Virtual
Prototyping System
generates Q3D and

thermal compact

SPICE models

ANSYS Q3D runs EM;
Import Chip SPICE 3D Package ICEPAK runs thermal
& GDS Models Model analysis; Joule
Heating simulation

DIE/Q3D/thermal models
integrated into complete
module SPICE
model/symbol library
with SIMetrix

Electrical and
Circuit Analysis Thermal Simulation Die level current
with SIMetrix Validation with sharing analysis
actual test results
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Flectrical Simulation P

= Package RLC equivalent circuit combined with MOSFET SPICE model to form compact
model

= Complete circuit assembled to mimic real-world application
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V6 6 114 dc 8.
V7 7 115 de 8.
VB B 116 dc 8.

Package RLC equivalent

e Double Pulse Simulation
circuit

with Compact SPICE Model

Package RLC extraction

SPICE Model
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Simulation vs Actual test poim

= |mportant step to validate simulation accuracy
= Simulation setup needs to match actual test including: parasitics and gate driver
= Actual samples built on typical process are characterized

DC test setup Double Pulse test setup Thermal test setup
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Electrical Simulation Validation

= Turning-off peak voltage, slew rate, Eoff S Vi i DaSTEG: Actua
match well v pcta
= Turning-on di/dt matches well, but voltage g
waveforms and Eon diverge. (further g
calibration ongoing)
= Modelling is validated for further die level
current sharing analysis T e
Turning-off waveforms
Eon 175°C Eoff 175°C
1200 20 Roon= 2.70,V55=18/-5V, V=400V Reeti= 2.40, Vas=18/-5V, V=400V
’ Eon l\-(lu.-ll . * ‘ - ‘
| Solid: Sim " ' 25 —— Eoff Simulation
800 Dashed: Actual 6
= ID_Sim 0 20
200 A j //
0 Jo VW ronmom e e D N o =
3.6 3.8 e [us]d'-o 4.2 44 100 200 300 4D°|DS[A]5°° 600 700 100 200 300 400ID5[A]
Eon vs Id Eoff vs Id

Turning-on waveforms
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Thermal Simulation and validation

= Simulation vs measured, deviation within 4%
= Thermal RC network extracted with internally developed script

Rthj-f Simulation versus Actual Measurement

Temperature
[cel] Coolant Temprature: 65°C, Flow Rate: 10LPM
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Simulati d
CFD simulation with Flow rate 10LPM, imufation’vs measure

coolant temperature 65°C, 50W/die
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ASIA

Joule-heating, CFD co-simulation

= CFD simulation coupling with EM loss from Q3D
= Slightly increased max temperature with EM loss coupled
= CFD simulation with EM loss captures temperature profile accurately

Current density profile modeled by  CFD simulation without EM CFD simulation coupling with EM
Q3D, DC current=400A Loss, Max temp:109C Loss, Max temp:111C
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Die level current sharing study and pcim
improvement proposal

= 2 sources of mismatch are investigated: package layout and die-to-die
process variation

= Each die sees different parasitic inductaces due to package layout
constraints, causing current sharing mismatch

= Process variation(i.e., Rdson, Vth etc.) may further increase the mismatch

* Fine-tuning internal gate resistor is proposed to mitigate the mismatch

= f | S — — — — Z
) = o || |
Package layout induced current- Die-to-die process variation Improved current-sharing with
sharing mismatch induced current-sharing mismatch  fine-tuning internal Rg
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summary

* This paper presents a study on electrical and thermal modelling of a
Silicon-Carbide power module for EV traction inverters.

* The impact of package parasitic mismatch and SiC process variation on
the robustness of SiC power modules was explored.

= The work also studied the cross-coupling between Joule heating of
bonding wires and power loss of SiC MOSFET die.

= The simulation results obtained demonstrated excellent alignment with
actual test data.

* The research futher delved into die-level sharing to quantify current
mismatch caused by package layout constraints and process variation.

= Mitigation measures are proposed to further improve the module’s
ruggedness.
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Thank you for the attention!

I'm pleased to answer your questions
Leon.zhang@onsemi.com
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