

Leon Zhang onsemi

7/26/2023

Abstract

- SiC power modules are gaining popularity for EV traction inverters thanks to higher efficiency and power density.
- The fast-switching characteristics of SiC MOSFETs present challenges in the design and mass production of power modules.
- The study is based on onsemi's SSDC SiC power module for EV traction inverters
- This paper explores the impact of package parasitic mismatch and dielevel mismatch on the robustness of SiC power modules, using commercially available simulation tools such as ANSYS® Q3D Extractor®, ANSYS® Icepak® and SIMetrix technology.
- The modeling approach is validated with actual test results, followed by an investigation of die level current-sharing.
- We conclude with proposed mitigation measures to enhance the power module's ruggedness.

Design Challenges

Fast-switching and high-power density of SiC present design challenges:

- More sensitive to package parasitic RLC
- Package layout mismatch induces current-sharing mismatch.
- Die-to-die process variation induces current-sharing mismatch.
- Joule heating of metal interconnect needs to be evaluated in conjunction with CFD simulation to accurately predict temperature profile.

Power module designers are challenged to mitigate risk with proven techniques.

Modelling and Verification workflow

- Commercially available CAD software and internally developed scripting are utilized to streamline the simulation process
- Electrical and thermal simulation results are validated with actual test results
- Die level current sharing is investigated
- Measures for improving module ruggedness are proposed

ASIA

Onsemi Virtual ANSYS Q3D runs EM; **Prototyping System** Import Chip SPICE **ICEPAK** runs thermal 3D Package generates Q3D and & GDS Models Model analysis; Joule thermal compact Heating simulation SPICE models DIE/Q3D/thermal models Electrical and integrated into complete Thermal Simulation **Circuit Analysis** Die level current module SPICE with SIMetrix Validation with sharing analysis model/symbol library actual test results with SIMetrix 7/26/2023

onsemi SSDC SiC 900V power module for EV traction inverter

7/26/2023

Electrical Simulation

- Package RLC equivalent circuit combined with MOSFET SPICE model to form compact model
- Complete circuit assembled to mimic real-world application

Simulation vs Actual test

- Important step to validate simulation accuracy
- Simulation setup needs to match actual test including: parasitics and gate driver
- Actual samples built on typical process are characterized

DC test setup

Double Pulse test setup

Thermal test setup

Electrical Simulation Validation

- Turning-off peak voltage, slew rate, Eoff match well
- Turning-on di/dt matches well, but voltage waveforms and Eon diverge. (further calibration ongoing)
- Modelling is validated for further die level current sharing analysis

Turning-off waveforms

Thermal Simulation and validation

- Simulation vs measured, deviation within 4%
- Thermal RC network extracted with internally developed script

CFD simulation with Flow rate 10LPM, coolant temperature 65°C, 50W/die

Simulation vs measured

Joule-heating, CFD co-simulation

- CFD simulation coupling with EM loss from Q3D
- Slightly increased max temperature with EM loss coupled
- CFD simulation with EM loss captures temperature profile accurately

Current density profile modeled by Q3D, DC current=400A

CFD simulation without EM Loss, Max temp:109C

CFD simulation coupling with EM Loss, Max temp:111C

Die level current sharing study and improvement proposal

- 2 sources of mismatch are investigated: package layout and die-to-die process variation
- Each die sees different parasitic inductaces due to package layout constraints, causing current sharing mismatch
- Process variation(i.e., Rdson, Vth etc.) may further increase the mismatch
- Fine-tuning internal gate resistor is proposed to mitigate the mismatch

Package layout induced currentsharing mismatch

Die-to-die process variation induced current-sharing mismatch

Improved current-sharing with fine-tuning internal Rg

Summary

- This paper presents a study on electrical and thermal modelling of a Silicon-Carbide power module for EV traction inverters.
- The impact of package parasitic mismatch and SiC process variation on the robustness of SiC power modules was explored.
- The work also studied the cross-coupling between Joule heating of bonding wires and power loss of SiC MOSFET die.
- The simulation results obtained demonstrated excellent alignment with actual test data.
- The research futher delved into die-level sharing to quantify current mismatch caused by package layout constraints and process variation.
- Mitigation measures are proposed to further improve the module's ruggedness.

Thank you for the attention!

I'm pleased to answer your questions Leon.zhang@onsemi.com